Simplify cos6θ + sin6θ + 3 cos2θ sin2θ 
 
                Answer: 
            
        1
- Expression can be rewritten as following
 = (cos2θ)3 + (sin2θ)3 + 3 cos2θ sin2θ
- Since x3 + y3  = ( x + y ) ( x2 + y2 - xy)
 = (cos2θ + sin2θ ) [ (cos2θ)2 + (sin2θ)2 - cos2θ sin2θ ] + 3 cos2θ sin2θ
- Since cos2θ + sin2θ  =1 and  x2 + y2  = (x+y)2 - 2 xy)
 = (cos2θ + sin2θ ) [ (cos2θ + sin2θ)2 - 2 cos2θ sin2θ - cos2θ sin2θ] + 3 cos2θ sin2θ
 = [ 1 - 3 cos2θ sin2θ ] + 3 cos2θ sin2θ
 = 1
 Global
 Global 
        