If the mean of ^@ 6 ^@ observations ^@  x, x + 2, x + 4, x + 6, x + 8, x + 10^@  is ^@  10 ^@, find the value of ^@  x. ^@
 
                Answer: 
            
        ^@ 5 ^@
- We know, @^ \text { Mean } = \dfrac {\text{Sum of observations}} {\text{Number of observations}} @^
- Thus, mean of the given observations @^ = \dfrac { x + x + 2+ x + 4+ x + 6+ x + 8+ x + 10 } { 6 } = \dfrac { 6 x + 30 } { 6 } @^ But we are given that the mean is ^@ 10. ^@ @^ \begin{aligned} \therefore \space & \dfrac { 6 x + 30 } { 6 } = 10 \\ \implies & 6 x + 30 = 60 \\ \implies & 6 x = 30 \\ \implies & x = 5 \end{aligned} @^
- Hence, the value of ^@ x ^@ is ^@ 5 ^@.
 Global
 Global 
        