AC is a diameter of the circle and arc AXB = 2 arc BYC. Find ∠BOC.
![](https://www.edugain.com/egdraw/draw.php?num=5&sx=260&sy=260&x0=130&y0=130&A1=shape:ellipse;cx:0;cy:0;r1:7;r2:7;fill:0.2&A2=shape:ellipse;cx:0;cy:0;r1:200;r2:200&A3=shape:polygon;points:0,0,50,86.602540378444,-100,0,100,0,50,86.602540378444;textc:[0.-5]O,[0.20]B,[-15.5]A,[5.5]C&A4=shape:ctext;x:-55;y:95.262794416288;text:X&A5=shape:ctext;x:95.262794416288;y:55;text:Y )
Answer:
60°
- The ratio of the arc length to the circumference will be the same as the angle subtended by the arc/chord to the angle in a full circle (360°).
- Here, we know that arc AXB = 2arc BYC.
This means ∠BOA = 2∠BOC. - Also, AC is the diameter, and angle on a straight line is 180°. So, ∠BOA + ∠BOC = 180°.
⇒ 2∠BOC + ∠BOC = 180°
⇒ ∠BOC = 60°